Role of Hypoxic Conditions in Cartilage Tissue Engineering

Chan Cheuk Ka 1155174356

Supervisor: Prof Li Zhong Alan

Associate Examiner: Prof CHAN Pui Barbara

Table of contents

O1 Background
Problem statement

O4 Experimental protocols

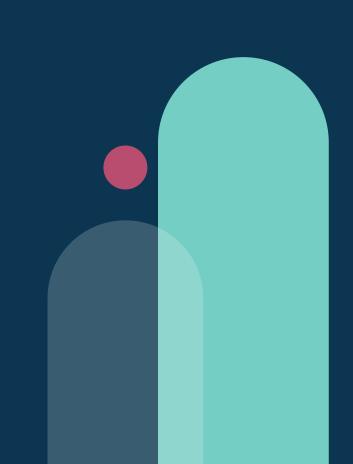
02 Literature Review

05 Results

Current techniques

Experimental results

Theory


Experimental design rationale

06 Discussion

Conclusion

01 Background

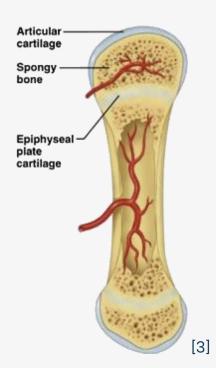
Problem statement

Cartilage Damage

Current situation

Cartilage damage is a very common ailment affecting many people worldwide

Limited Regeneration Capacity [2]


Avascular

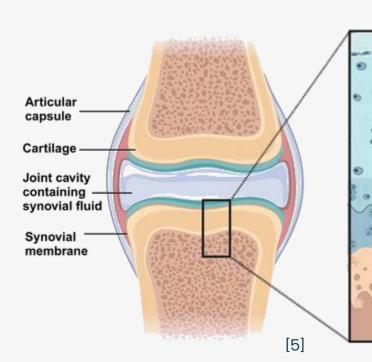
Lacks direct oxygen supply

Aneural

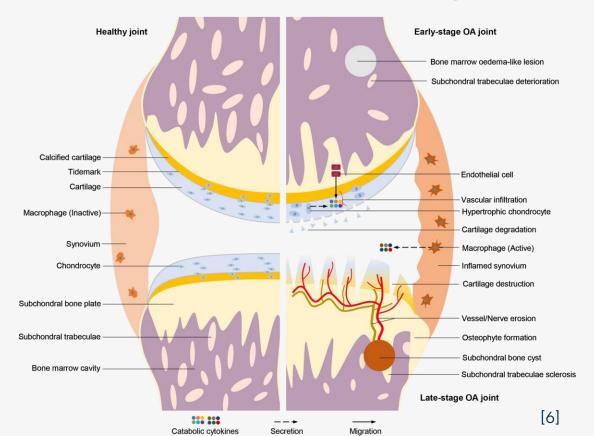
Lacks stimulation

Alymphatic

Slow metabolism

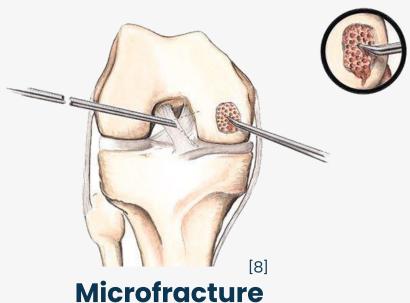


Lack Progenitors


Slow healing

Hyaline Cartilage

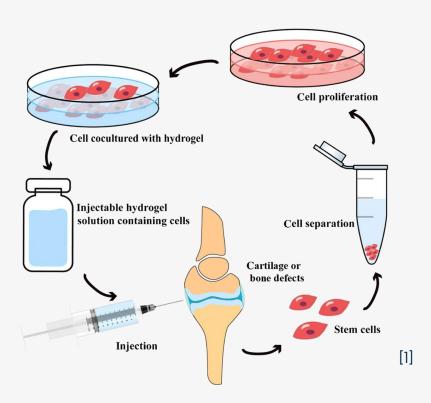
- Smooth in nature
- Rich in type II collagen
- Exhibits low friction
- Aids joint articulation [4]



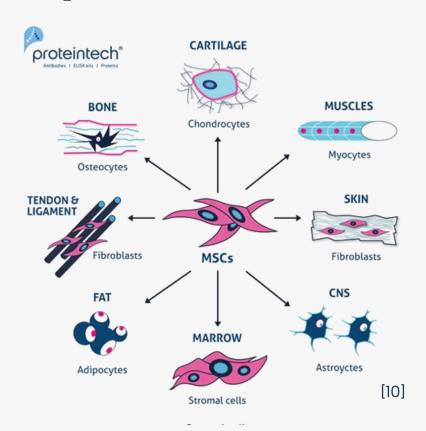

Fibrocartilage Formation

- Form after injuries
- Rich in type I collagen
- Inferior biomechanical properties
- Unsuitable for joint articulation
- Degrades cartilage
- Can lead to osteoarthritis [7]

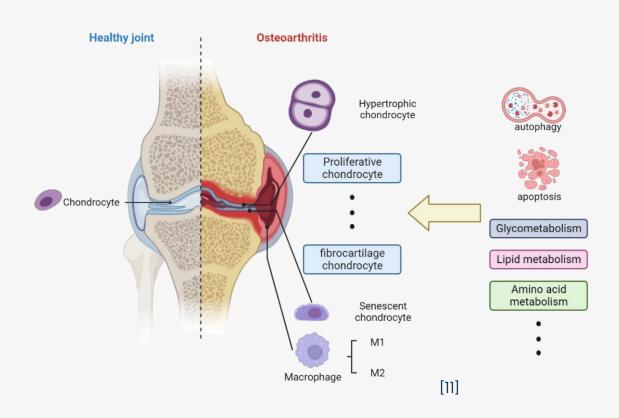
Current Treatments



Joint replacement


02 Literature Review

Current techniques


Autologous Chondrocyte Implantation

Mesenchymal Stem Cells (MSCs)

Chondrocyte Phenotypic Instability

03 Theory

Experimental design rationale

2% - 7% O₂

The native oxygen concentration of cartilage

$HIF-1\alpha$

5-10 mins half-life in O_{2} [13]

Degraded via prolyl hydroxylation and proteasome degradation [14]

Regulates differentiation [15]

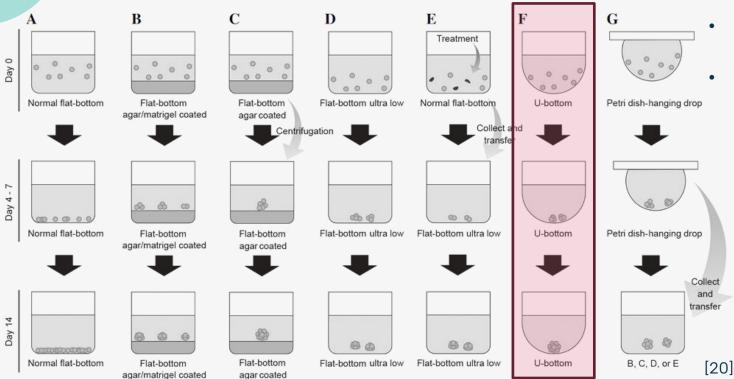
Upregulates related genes like Sox9

Stabilises phenotype [16]

Epigenetic effects

3D Culturing

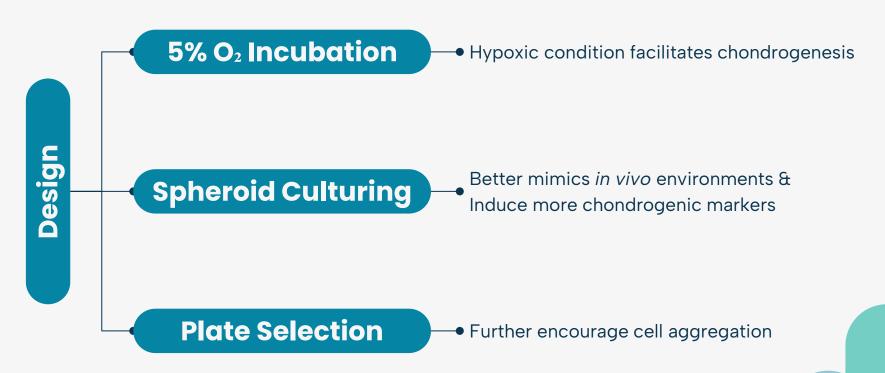
2D


- Convenient
- Easily reproducible
- Cannot mimic in vivo environments (mostly cell-plastic & cell-medium interactions)

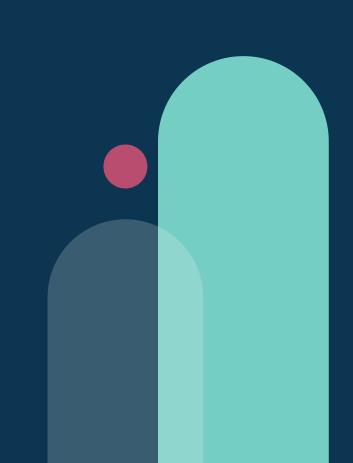
[17,18]

3D

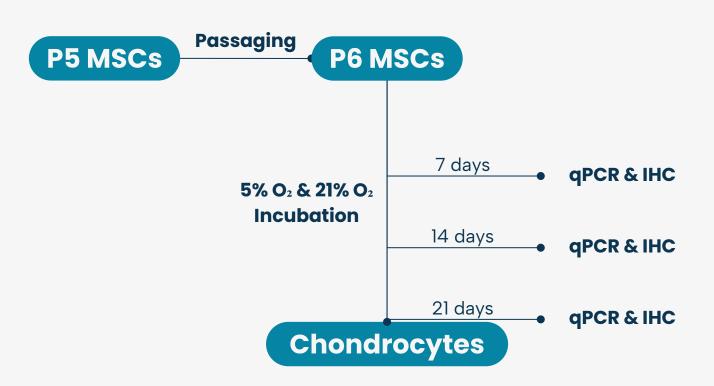
- Promote cell-cell & cell-ECM interactions [18]
- Natural cell morphology by allowing aggregation and micro-environments
 [18]
- Can induce more chondrogenic markers and proteins [19]


Well Plate Selection

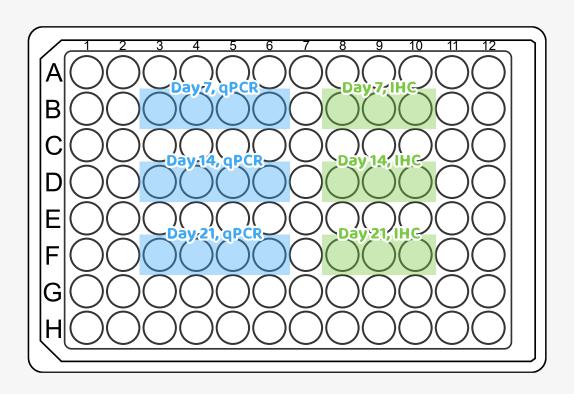
Ultra-low attachment


Round bottom

Experimental Design

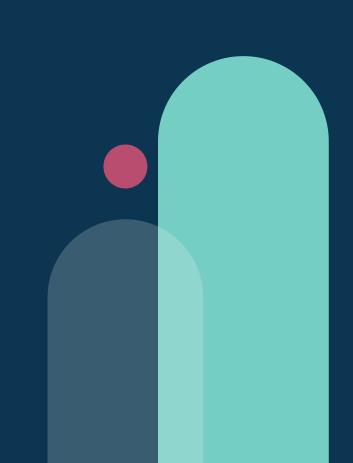


04 Experiment

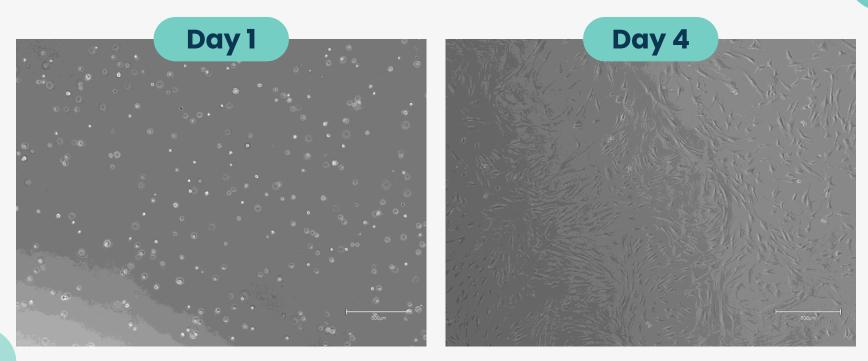

Experimental protocols

Experimental Flow

Well Plate Occupancy

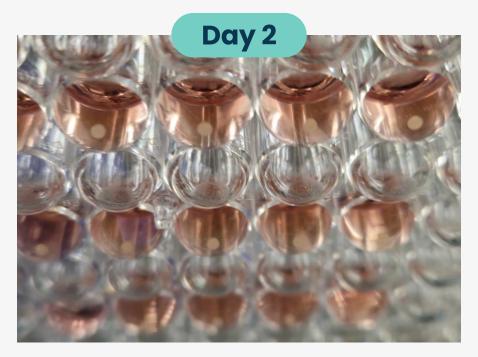


Chondrogenesis Evaluation

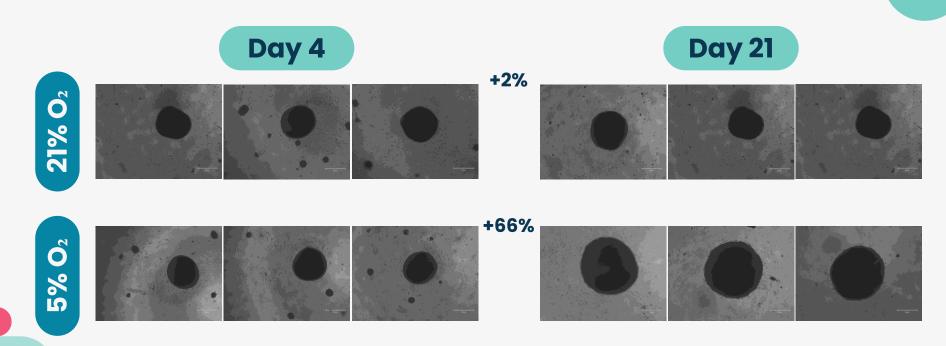

Gene (qPCR)	Protein (IHC)	Chondrogenic Involvement	Expectation
Collal		Type I collagen	↓ in hypoxia
Col2a1	COL2	Type II collagen: major cartilage component	↑ in hypoxia
Col10a1	COL10	Type X collagen	↓ in hypoxia
Acan		Aggrecan: major cartilage component	↑ in hypoxia
Hif1α	HIF-1α	Regulates chondrogenic differentiation	↑ in hypoxia
Sox9		Maintains cartilage homeostasis	↑ in hypoxia
Mmp13		Degrades type II collagen	↓ in hypoxia

05 Results

Experimental results

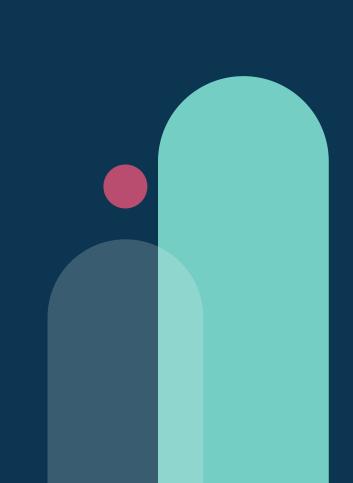


MSC Passaging


MSCs in T75 flask, 4× magnification

Cell Spheroid Aggregation

Bottom view of the well plate


MSC Passaging

MSCs in well plates, 4× magnification

06
Discussion

Conclusion

Discussion

Microscopic Observations

More pronounced cell spheroid growth in hypoxia (+66%) vs normoxia (+2%)

qPCR & IHC

To be done in the future to provide quantitative results

Implications

Hypoxic culturing of cartilage tissue in vitro is viable

It is an effective and efficient method of phenotypic control, compared to the use of factor and hormone cocktails

References

- [1] M. Liu *et al.*, "Injectable Hydrogels for Cartilage and Bone Tissue Engineering," *Bone Research*, vol. 5, no. 17014, p. 17014, May 2017, doi: https://doi.org/10.1038/boneres.2017.14.
- [2] C. A. Vilela, C. Correia, J. M. Oliveira, R. A. Sousa, J Espregueira-Mendes, and R. L. Reis, "Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs," *ACS biomaterials science & engineering*, vol. 1, no. 9, pp. 726–739, Aug. 2015, doi: https://doi.org/10.1021/acsbiomaterials.5b00245.
- [3] A. Lindahl *et al.*, "Cartilage and Bone Regeneration," in *Tissue Engineering (Third Edition)*, J. de Boer, C. A. van Blitterswijk, J. A. Uquillas, and N. Malik, Eds., Academic Press, 2023, pp. 533–583. doi: https://doi.org/10.1016/b978-0-12-824459-3.00016-0.
- [4] J. C. Sherwood, J. Bertrand, S. E. Eldridge, and F. Dell'Accio, "Cellular and Molecular Mechanisms of Cartilage Damage and Repair," *Drug Discovery Today*, vol. 19, no. 8, pp. 1172–1177, Aug. 2014, doi: https://doi.org/10.1016/j.drudis.2014.05.014.
- [5] X. Li et al., "Research Progress in Hydrogels for Cartilage Organoids," Advanced Healthcare Materials, vol. 13, no. 22, May 2024, doi: https://doi.org/10.1002/adhm.202400431.
- [6] Y. A. Pei, S. Chen, and M. Pei, "The Essential anti-angiogenic Strategies in Cartilage Engineering and Osteoarthritic Cartilage Repair," *Cellular and Molecular Life Sciences*, vol. 79, no. 1, Jan. 2022, doi: https://doi.org/10.1007/s00018-021-04105-0.
- [7] J. Li *et al.*, "Articular fibrocartilage-targeted therapy by microtubule stabilization," *Science Advances*, vol. 8, no. 46, Nov. 2022, doi: https://doi.org/10.1126/sciadv.abn8420.
- [8] K. R. Stone, "Failed Microfracture," www.stoneclinic.com, Mar. 17, 2020. https://www.stoneclinic.com/blog/failed-microfracture (accessed May 20, 2024).
- [9] J. R. H. Foran and P. W. Manner, "Knee Replacement Implants Ortholnfo AAOS," *Aaos.org*, 2016.
- https://orthoinfo.aaos.org/en/treatment/knee-replacement-implants/
- [10] Proteintech Group, "Are Mesenchymal Stem Cells (MSCs) true stem cells?," Ptglab.com, 2018.
- https://www.ptglab.com/news/blog/are-mesenchymal-stem-cells-mscs-true-stem-cells/

References

[11] Z. Liu, T. Wang, X. Sun, and M. Nie, "Autophagy and apoptosis: Regulatory Factors of Chondrocyte Phenotype Transition in

Osteoarthritis," Human Cell, vol. 36, no. 4, pp. 1326–1335, Jun. 2023, doi: https://doi.org/10.1007/s13577-023-00926-2. [12] H. Le, W. Xu, X. Zhuang, F. Chang, Y. Wang, and J. Ding, "Mesenchymal Stem Cells for Cartilage Regeneration," Journal of Tissue Engineering, vol. 11, p. 204173142094383, Jan. 2020, doi: https://doi.org/10.1177/2041731420943839. [13] S. Salceda and J. Caro, "Hypoxia-inducible Factor 1α (HIF- 1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions," Journal of Biological Chemistry, vol. 272, no. 36, pp. 22642-22647, Sep. 1997, doi: https://doi.org/10.1074/jbc.272.36.22642. [14] R. Amarilio, Sergey Viukov, Amnon Sharir, Idit Eshkar-Oren, R. S. Johnson, and Elazar Zelzer, "HIF1α Regulation of Sox9 Is Necessary to Maintain Differentiation of Hypoxic Prechondrogenic Cells during Early Skeletogenesis," Development, vol. 134, no. 21, pp. 3917-3928, Nov. 2007, doi: https://doi.org/10.1242/dev.008441. [15] M. B. Goldring and S. R. Goldring, "Articular Cartilage and Subchondral Bone in the Pathogenesis of Osteoarthritis," Annals of the New York Academy of Sciences, vol. 1192, no. 1, pp. 230-237, Apr. 2010, doi: https://doi.org/10.1111/j.1749-6632.2009.05240.x. [16] D. K. Taheem, G. Jell, and E. Gentleman, "Hypoxia Inducible Factor- 1α in Osteochondral Tissue Engineering," Tissue Engineering Part B: Reviews, vol. 26, no. 2, Jan. 2020, doi: https://doi.org/10.1089/ten.teb.2019.0283. [17] J. C. Fontoura et al., "Comparison of 2D and 3D Cell Culture Models for Cell growth, Gene Expression and Drug Resistance," Materials Science and Engineering: C, vol. 107, p. 110264, Feb. 2020, doi: https://doi.org/10.1016/j.msec.2019.110264. [18] D. Antoni, H. Burckel, E. Josset, and G. Noel, "Three-Dimensional Cell Culture: A Breakthrough in Vivo," International Journal of Molecular Sciences, vol. 16, no. 12, pp. 5517-5527, Mar. 2015, doi: https://doi.org/10.3390/ijms16035517. [19] M. M. J. Caron et al., "Redifferentiation of Dedifferentiated Human Articular chondrocytes: Comparison of 2D and 3D Cultures," Osteoarthritis and Cartilage, vol. 20, no. 10, pp. 1170-1178, Oct. 2012, doi: https://doi.org/10.1016/j.joca.2012.06.016. [20] P. Siva Sankar et al., "Modeling Nasopharyngeal Carcinoma in Three Dimensions," Oncology Letters, vol. 13, no. 4, pp. 2034-2044, Feb. 2017, doi: https://doi.org/10.3892/ol.2017.5697.

Thanks!

Guidance and assistance from supervisor Prof LI Zhong Alan and PhD student CAI Runxuan are acknowledged

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution